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MATHEMATICAL MODELLING OF THERMO-MECHANICAL STRESSES 
ARISING IN RECTANGULAR SUPPORTS OF THERMOELECTRIC 

MODULES

Traditionally available unsegmented thermoelectric modules are simple to operate but their applications 
are limited. Whereas, segmented thermoelectric modules have got significant amount of advantage over 
unsegmented thermoelectric modules, materially and performance vise, but structural reliability is still 
unresolved challenge. Thermoelectrical module encounters high stresses due to increase in operating 
temperature and difference in coefficient of thermal expansion. Consequently, these stresses create de-
formation and cracks in thermoelectric legs, especially at higher temperature. In this paper a comprehen-
sive analytical model for Thermoelectric modules is discussed. The model can predict thermally induced 
and shearing stresses in Thermoelectric module. The contemplation of geometrical shape for thermo-
electrical module is limited to rectangular and beam-like design, for unsegmented and segmented mo
dules. The analytical model was compiled in MATLAB and Python and results are discussed in detail.
Keywords: thermoelectric, thermo-mechanical stresses, stress-strain relationship, shear stress.
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Ш. Саттар

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОМЕХАНИЧЕСКИХ 
НАПРЯЖЕНИЙ ДЛЯ ПРЯМОУГОЛЬНЫХ СЕГМЕНТИРОВАННЫХ И 

НЕСЕГМЕНТИРОВАННЫХ НОГ

Традиционные имеющиеся несегментированные термоэлектрические модули просты в эксплуата-
ции, но их применение ограничено из-за низкой эффективности преобразования. Сегментирован-
ные термоэлектрические модули имеют значительное преимущество по материалу и по рабочим 
характеристикам по сравнению с несегментированными термоэлектрическими модулями, но про-
блема их конструктивной надежности при средней и высокой температурах (до 1000 °C и более) 
до сих пор не решена. Сегментированные модули сталкиваются с высокими напряжениями из-за 
повышения рабочей температуры. Следовательно, эти напряжения создают деформацию (изгиб, 
прогиб) и трещины на термоэлектрических опорах. В данной работе рассматривается комплекс-
ная аналитическая модель для термоэлектрических модулей. Полученная модель позволяет пред-
сказать термически индуцированные напряжения и напряжения сдвига на кромке компонента. 
Созерцание геометрической формы для термоэлектрических модулей ограничено прямоугольной 
и балочной конструкцией, для несегментированных и сегментированных модулей.  Аналитическая 
модель была составлена в MATLAB и Python, результаты подробно обсуждаются.
Ключевые слова: термоэлектрические, термомеханические напряжения, напряженно-деформиро-
ванные напряжения, напряжения сдвига.

Introduction

Due to the absence of moving parts, and, as a result, the reliability that allows such systems 
to operate in unattended mode for a long period of time, today there is practically no alterna-
tive to such generators in space exploration. When TE modules are subjected to thermal cy-
cling, thermally induced stresses go beyond yield and tensile strength, which ultimately leads 
to failure of module. Several experimental studies have focused on evaluating and minimizing 
the stresses during the operation in TE applications. Main findings of the literatures concluded 
that thermomechanical stresses are influenced by i) type of materials [30], ii) leg’s geometry 
[17] and iii) boundary conditions [31].

To predict sustainability of the TE leg, thermally induced stresses are viewed as major bot-
tlenecks for robustness, especially for high temperature thermoelectric modules [24]. Another 
side of studies also publicized that high stress levels in TE legs arise, with respect to high tem-
perature gradients, due to mismatch of thermal expansion coefficients at the interface [23]. 
Particular solutions are proposed that by varying the leg geometry of unsegmented leg we can 
suppress stress level but within certain length to thickness ratio [25]. But contrary to unseg-
mented leg by increasing the length to thickness ratio(adding more layers) in segmented leg 
case, although we can maximize the output but, the module undergoes deformation due high 
stress level [19]. Especially the introduction of anti-diffusion layers, in segmented case, can 
aggravate stress level, whereas alleviate the performance [7]. Segmented TE Legs can generate 
up to 17% [28] electrical energy and the reliability of the segmented TE leg is not steady [9]. 
Whereas, unsegmented TE leg can’t provide output, as we can get nearly 7%, as much as seg-
mented leg but can sustain its basic structure more than 40 years [6]. 
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Analytically Timoshenko developed a fundamental relationship between temperature and 
stress [14], which was extended by Suhir by defining the effect of length and thickness on 
stress level in TE leg. Suhir’s [26] mathematical model, on TE legs, gives insight to under-
stand effect of shear stress between the layers and at the boundaries. Malzbender’s [13] work 
demonstrates the effect of stiffness, thickness and thermal expansion on stress level. Z.-H. Jin 
[10] continued Malzbender’s model and predicted that failure can occur in multilayer leg, if 
length to thickness ratio increases. G. Nikolova [15] developed a comprehensive mathematical 
model to study thermal and mechanical behavior of bonded layers. She has demonstrated that 
debonding (failure) of layers happen when module reaches at its critical shearing stress. Nao 
take [16] develop a very comprehensive mathematical model for rectangular plate and studied 
their thermal-mechanical behavior at different temperature gradient.

In this paper we have considered Naotake’s plate theory and applied it to provide an alterna-
tive prospect, especially in field of thermoelectric generators. Particularly, the impact of shear-
ing stress, shearing strain, thermally induced bending stress and shear forces are discussed. The 
presented analytical model is comprehensive and easy to predict thermo-mechanical stresses 
in TE leg to calculate reliability of the TE module.

Analytical Model

The basic TE leg and its components are demonstrated in Figure 1. The analytical model is 
derived using a specific geometry (rectangular) for TE leg, as shown in Figure 2, and each layer 
is connected perpendicularly to one another. The basic distinction between segmented and 
unsegmented leg is that former’s thermoelement is made of single material whereas latter has 
two (or more than two).

For unsegmented leg length to thickness ratio, according to the following articles [4, 5], has 
been considered between 0.5–0.9% due to effectiveness and low level of stress. The coordinate 
plane for TE leg is shown in Figure 2 and the boundary conditions, discussed below in details, 
make physically possible for leg to expand on in plane direction while develop stress out of 
plane direction. 

Figure 1. (a) Unsegmented and (b) segmented TE legs
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Let u, v, and w be displacement components in the x, y, and z direction at the neutral plane 
(z = 0). The two-dimensional stress-strain relationship [3], in-plane direction, for an isotropic 
component
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Here, E is young modulus, σ is stress, α  is coefficient of thermal expansion and v is Poisson 
ratio and ΔT is change in temperature [27]. In order elaborate he thermoelastic behavior of the 
leg, we define the resultant forces and resultant moment per unit thickness for each component 
with respect to x, y, and z- axis, as product of stress σ and strain 
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Now substituting the value of stress in equation (3) and (4) and integrating accordingly, we 
get solution for resultant force and moment equations

Figure 2. Basic Structure of TE leg comprised from different components
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Here FT, MT, D, are thermally induced force, thermal bending moment and flexure rigidity 
and defined as [11, 16]. Now by substituting equation (5) and (6) into equation (2), we’ll get 
stress each component of rectangular TE leg

	

x x x T                                  T

y y y T                                   T

xy xy xy

z zN M N M E T
h h v h h

z z
N M N M E T

h h v h h
zN M

h h

σ α

σ α

σ

 = + + + − ∆ −  
 = + + + − ∆ −  

= −

3 3

3 3

3

1 12 1 1 12

1
1 12 1 1 12

1
1 12

	 (7)

This Equations satisfy the Kirchhoff hypothesis [2] for in-plane stress. We now consider the 
equilibrium state for the plane stresses for x and y. When body forces are absent, integrating 
equilibrium equations, defined in [16], we get thermal stress function φ  [20]. The compa
tibility equation and stress function φ for by plane strain gives us fundamental equation of force

	 TFφ∇ ∇ =−∇2 2 2
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The equation (8) is a basic equation to understand thermoelastic behavior of TE leg. 
Through this equation we can find thermally induced force for each part in plane direction. 

Equation of Displacement

When specific temperature field is given, displacement, stress and strain are sought. Conse-
quently, if displacement equation is given, stress, strain and external forces are sought [18]. To 
drive basic equation of displacement let’s say τx  and τy  are the shearing forces per unit length 
for x and y direction and can be defined as function of stress
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Introducing equilibrium equations of moments for “x” and “y” components 
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By comparing equation (6) and (9) we know that we understand that Myx = –Mxy. Since 
shear forces are concentrated on edges, causing thermally induced bending moment, we get 
the fundamental equation of displacement (in the absence of external load)
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Equation (10) is used to calculate the deformation caused by thermally induced stress and 
bending moment. By specifying boundary condition, we can develop an analytical equation 
for deformation for out of plane direction. 

Boundary Condition – Vertically Restricted Ends

The boundary conditions, demonstrated in Figure 3, are taken into consideration according 
the use of interdiffusion layer. The interdiffusion layer, especially in case of segmented TE leg, 
restricts the thermal expansion each material. Hence leading to bending moment on horizontal 
axes and thermally induced stress on vertical boundaries.

Figure 3. Boundary conditions – Vertically restricted and horizontally free

These conditions are defined according to axis, which are
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At hy =±
2
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With respect to Newmann condition [8] and Boas Theorem [1], we know that the displace-
ment equation at arbitrary x and y points, is double cosine series at particular temperature, 
which is
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Here ,m
m
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m
h
πβ =  and are defined by boundary conditions. Regarding to our 

boundary conditions, the elastic problem of a restricted edge (y = ± h/2) causes a generation 
of force (φy) within a volume on y-axis direction. The force is distributed symmetrically and 
can be defined as 
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Here, Em is elastic constant and depends on boundary conditions. For the boundary condi-
tion (x = ± l/2), the displacement equation is
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 And according to fourth-order partial differential equation, the above equation has follow-
ing solution
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2
, equation of equilib-

rium gives us the equation for elastic constant, that is
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Thus, for the boundary conditions lx =±
2

, the resultant moment and shearing forces, due to 
displacement can be calculated through equation (6)
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For the restricted boundary (condition ( hy =±
2

), the deformation (displacement) and 

shearing forces can be concluded by using superposition theorem.
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Through equation (16–17) we can find thermally induced stress and shear stress on edge of 
each component. The concentrated shear stress (τx and τy) are tensile nature stresses and cause 
deformation, interlayer diffusion, dislocation, and cracks at interference. 

Segmented TE Leg Equation

This force Fd is a resultant force produced due to mismatch of coefficient of thermal expan-
sion (α ) between the layers.

Figure 4. Multi-layer TE leg (segmented case)
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	 Fd = F + Fα	
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Consequently, the resultant moment is 
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Now introducing separation of variables method and constructing relationship between 
forces, moments, and shear strain at the interference between two adjoining layers are
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Here A, B, D and K represents extensional coefficient, flexural-Extensional coupling coef-
ficient, flexural stiffness coefficient and interfacial shear compliance (curvature of the leg) re-
spectively and can be define as 
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Now in order to find the strain, the inverse matrix of equation (20) is
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And the solution for this equation 
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At position y that is perpendicular to the interference between layers the interface strain and 
stress is define as 
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Results and Discussion
The investigation presented in this paper is continuity of our previous papers [21, 22] to 

understand development of thermal stress in TE leg. Figure 5 (a) shows the calculated value of 
segmented and unsegmented modules using equation of heat flux and stress. Whereas Figure 
5 (b) demonstrates comparison of maximum stress between different TE components. Figure 
5 demonstrates the difference in thermal expansion coefficient (α), Elastic modulus (E) and 
Poisson ratio of each material with respect to temperature distribution.

Figure 5. Comparison of for (a) maximum stress, (b) maximum stress in each component

Whereas, Figure 6 indicates that there is an incline in maximum stress when the thickness 
of the leg (or component) is increased. The investigation on shear and normal stresses, shown 
in Figure 6 and Figure 7, indicates that the increase in thickness can leads to thermally induced 
interfacial stresses which eventually cause deformation and cracks. 

Figure 6. (a) Shear stresses leading to tensile stresses at edges whereas (b) resultant stresses leading to 
compressive stresses in Y direction

From the Figure 7 (a) we can observe that when boundaries are restricted vertically a pro-
portional relationship between temperature and deformation developed. This relationship 
states that the edge of the leg causes tensile nature stresses in both x and y direction, whereas 
resultant force, shown in Figure 6, develops compressive stresses in y-direction. From Figure 6 
and Figure 7 it can be observed that the tensile stresses are develop within 3.5mm ≤ x ≤ 5mm 
and compressive stresses within 4mm ≤ y ≤ 8mm. 
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In segmented TE leg, an addition of interdiffusion layers and soldering layers cause higher 
rate of deformation compared to unsegmented legs [12]. The demonstrated results of Figure 7 
are obtained using equation of displacement for hot and cold side of the TE leg. The deforma-
tion product of thermal stresses causing plastic deformation in soldering and interdiffusion 
layers. The thickness of soldering and interdiffusion later was kept between 0.7 mm≤ h ≤ 1.5 
mm. Therefore, these layers deform with respect to TE element at melting point temperature 
above 200C.

Figure 7. Deformation at (a) hot end and (b) cold end with respect to their thickness

(a)                                                                      (b)

(c)
Figure 8. (a) (b) (c). Pareto Front of stress-strain-temperature relationship
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The equation of displacement, thermal bending moment, shearing stress and multi-leg 
are simulated in python to obtain Pareto Front. Pareto Front profile, shown in Figure 8, 
evaluates the thermally induced shearing stresses, force and strain in TE leg according to 
their configuration. Pareto Front of Figure 8 (a) indicates that the maximum stress occur 
at higher temperature in unsegmented leg. The absence of interdiffusion layer and isotropic 
material use as thermoelement, at specific length to thickness ratio, deform the only when 
stress increases the strength of the module. Figure 8 (a) shows that the most of device failing 
on maximum stress are between 400 C to 700 C. In case of segmented leg, shearing strain 
increases the average stress of the TE leg, mainly due to difference in coefficient of thermal 
expansion of different material. Figure 8 (b) shows that deformation in segmented leg occurs 
mostly on interface between the materials. The obtain simulating results on shearing force, 
shown in Figure 8 (c), are compared with the reference to Jin [10, 29]. It is evident that the 
shear forces play more significant role in leg’s buckling failure in segmented case as compare 
to unsegmented leg. These shear forces, for rectangular design, contribute to maximum nor-
mal stress up to 55% at hot end and 21.7% at cold end. Consequently, the effect of bending 
stresses on the TE leg specifies the change of moment of inertia with varying values of shear 
forces. Therefore, maximum bending stress develops a directly proportional relation to the 
moment of inertia. The maximum bending stress leads the shear forces in components verti-
cally (restricted at y-axis), whereas interfacial shear forces are ignorable due to their possibil-
ity to diffuse into neighboring materials.

Conclusion

The analytical model is used to analyzed thermo-mechanical behavior of a vertically restric
ted rectangular TE leg by considering their resultant shear force, thermally induced shearing 
strain and stress per unit thickness. Through simulating results, it has been demonstrated that 
high length to thickness ratio rise compressive-tensile nature thermal stresses and cause defor-
mation (failure) after a specific temperature gradient. The analytical model can predict thermo-
mechanical stress in TE leg, specifically for rectangular shape TE leg. Pareto Front results sug-
gest that the segmented TE leg is more vulnerable to thermally induced stress as compare to 
unsegmented TE leg. The effect of extension-bending coupling, flexural stiffness and Poisson’s 
ration on thermal stress are significantly included in present model to calculate effect of shear-
ing force. Shearing force cause bending moment (deformation) in unsegmented leg, whereas 
in segmented leg it causes inter-layer diffusion. 
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