МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

DOI: 10.25586/RNU.V9187.19.02.P.003

УДК 621.43.04; 51 (06)

В.М. Куляпин, И.С. Елисеев, Е.В. Бовтрикова, И.М. Аслямов

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ РАСПЛАВЛЕННОГО СЛОЯ ПРИ ВОЗДЕЙСТВИИ ИСТОЧНИКОВ ВЫСОКОЙ ПЛОТНОСТИ

Предложена математическая модель процесса движения расплавленного слоя при фазовых превращениях и найдены условия его устойчивости.

Ключевые слова: математическая модель, фазовые превращения, расплавленный слой, устойчивость процесса.

V.M. Kulyapin, I.S. Eliseev, E.V. Bovtrikova, I.M. Aslyamov

MATHEMATICAL MODEL OF THE MOTION OF THE MOLTEN LAYER WHEN EXPOSED TO SOURCES OF HIGH DENSITY

A mathematical model of the process of motion of the molten layer during phase transformations is proposed and the conditions of its stability are found.

Keywords: mathematical model, phase transformation, the molten layer, the stability of the process.

Разработка математических моделей для решения сложных инженерно-физических задач, позволяющих проводить исследования устройств с электрическим разрядом, является актуальной для различных технических направлений, таких как машиностроение, энергетика, авиастроение, ракетостроение и работа космических аппаратов (КА). Использование человеком околоземного космического пространства приобретает все большую активность и значимость [1;2].

Исследования теплофизических процессов начальной стадии воспламенения путем их математического моделирования в штатных и аварийных ситуациях, при динамических и статических режимах работы, с применением интегрального метода решения задач с фазовыми превращениями и испарением при совместном воздействии энергии от разряда и объемных источников энергии высокой плотности при химических реакциях горения ранее были рассмотрены в работе [5]. Математические модели динамических и стационарных процессов фазовых превращений плавления, испарения, воспламенения, начинающихся в твердой или жидкой фазе, протекающих под воздействием поверхностных и объемных источников энергии, были разработаны с целью развития теории электрического зажигания топлива ракетных двигателей управления [Там же].

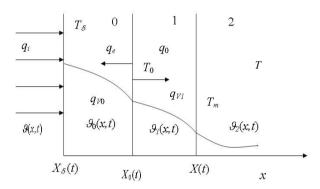
Далее по результатам исследований теплофизических процессов при действии на материал источников энергии с высокой плотностью мощности предложен математический аппарат решения сложных задач теплопроводности с фазовыми превращениями и уносом массы испарением [4]. Предложена система безразмерных параметров, позволяющих решить сложные задачи теплопроводности.

Выпуск 2/2019

В данной статье развивается один из подходов, позволяющий получить математические модели и соответствующую качественную оценку исследуемых процессов движения границ фазовых переходов.

1. Выделение энергии в объеме

Одномерная задача нагрева поверхностным источником с плотностью q_i и объемным источником с плотностью q_v в зоне, ограниченной внешней подвижной границей разрушения X_0 и границей плавления X, представлена на рисунке. Зона паров – 0; 1 – зона расплава; 2 – твердая фаза. Температура горения – T_{δ} ; температура испарения – T_{0} ; температура плавления – T_{m} . Профили температур в твердой фазе – $\theta_2(x,t)$; жидкой – $\theta_1(x,t)$; газообразной – $\theta_0(x,t)$. Рассматриваем для примера только процесс плавления и испарения материала мишени.



Модель переходных процессов фазовых превращений

Уравнение Фурье с учетом условий на границах раздела фаз запишется в виде: – для расплавленной зоны $X_0(t) \le x \le X(t)$:

$$\frac{\partial^2 \theta_1}{\partial x^2} - \frac{1}{a_1} \frac{\partial \theta_1}{\partial t} = -\frac{q_{\nu_1}}{\lambda_1};\tag{1}$$

– для твердой зоны $x \ge X(t)$:

$$\frac{\partial^2 \theta_2}{\partial x^2} - \frac{1}{a_2} \frac{\partial \theta_2}{\partial t} = 0; \tag{2}$$

Граничные условия:

$$\vartheta_1(X;t) = \vartheta_2(X;t); \tag{3}$$

$$\lambda_1 \left(\frac{\partial \theta_1}{\partial x} \right)_{x=X} = \lambda_2 \left(\frac{\partial \theta_2}{\partial x} \right)_{x=X} - L \rho \frac{dX}{dt}; \tag{4}$$

$$q_0 + \lambda_1 \left(\frac{\partial \theta_1}{\partial x} \right)_{x = X_0} = \left[L_0 \rho + \rho c \left(T_0 - T \right) \right] \frac{dX_0}{dt}; \tag{5}$$

$$\vartheta_2(x;0) = T; \quad \vartheta_2(\infty;t) = T, \tag{6}$$

где a – температуропроводность; $L, L_{\scriptscriptstyle 0}$ – теплота плавления, теплота испарения.

Куляпин В.М., Елисеев И.С., Бовтрикова Е.В., Аслямов И.М. Математическая модель...

2. Границы фазовых превращений

Профиль температур жидкой фазы при помощи решения (6) задается в виде:

$$\vartheta_1(x;t) = T_0 + \frac{T_m - T_0}{X - X_0} (x - X_0) + \psi(t) \Big[(X - X_0) (x - X_0) - (x - X_0)^2 \Big]. \tag{7}$$

Профиль температуры твердой фазы определяется выражением (7):

$$\vartheta_2(x;t) = T_m - (T_m - T) \left\{ 1 - exp \left[-\frac{1}{a_2} \frac{dX}{dt} (x - X) \right] \right\}. \tag{8}$$

Из условия на подвижной границе испарения (5) и условия (4) на границе плавления определяем скорость изменения расплавленной зоны $y = (X - X_0)$.

$$y' = f(t)y^{n} + g(t)y + h(t), \tag{9}$$

$$f(t) = \lambda_{1} \left(T_{0} - T_{m}\right) \left(\frac{1}{L_{0}\rho + c\rho(T_{0} - T_{m})} + \frac{1}{L\rho + c\rho(T_{m} - T)}\right);$$

$$g(t) = \left(\frac{c\rho}{2} \frac{dT_{0}}{dt} - \frac{q_{V}}{2}\right) \left(\frac{1}{L_{0}\rho + c\rho(T_{0} - T_{m})} - \frac{1}{L\rho + c\rho(T_{m} - T)}\right);$$

$$h(t) = -\frac{q_{0}(t)}{L_{0}\rho + c\rho(T_{0} - T_{m})}.$$

Решение уравнения (9) имеет вид [3]

$$y = \left(\frac{h}{f}\right)^{\frac{1}{n}} U(t),\tag{10}$$

где $z = \left\lceil \frac{h(t)}{f(t)} \right\rceil^{\frac{1}{n}}$ – решение уравнения $z' - g(t)z + \gamma h(t) = 0$, а функция U(t) определяется

из соотношения

$$\int \frac{dU}{U^n + \gamma U + 1} + C = \int \left(\frac{f}{h}\right)^{\frac{1}{n}} h dt. \tag{11}$$

Вводим в формулу (10) значения коэффициентов, получаем выражение для ширины зоны фазовых превращений:

$$X - X_0 = -\frac{\varepsilon}{q_0} U(t), \tag{12}$$

$$r_{Ae} \ \varepsilon = \lambda_1 \left(T_0 - T_m \right) \left(1 + \frac{L_0 + c \left(T_0 - T_m \right)}{L + c \left(T_m - T \right)} \right).$$

3. Постоянная плотность тепловыделения

Рассмотрим переходные процессы в зоне, ограниченной границей плавления и границей испарения при постоянных значениях q_0 , q_{V_1} и T_0 .

В этом случае

$$\gamma = \left(\frac{\varepsilon q_{V_1}}{2q_0^2}\right) \left(\frac{L_0 + c\left(T_0 - T_m\right)}{L + c\left(T_m - T\right)} - 1\right), \ \gamma > 0.$$

Выпуск 2/2019

Безразмерный комплекс \overline{t} представляет собой безразмерное время:

$$\overline{t} = \frac{q_0^2 t}{\rho \epsilon \left[L_0 + c \left(T_0 - T_m \right) \right]}.$$

 Δ ля $\gamma < 0.25$

$$\overline{t} = \frac{1}{2\gamma} \ln \left| \gamma U^2 + U + 1 \right| - \frac{1}{2\gamma \sqrt{1 - 4\gamma}} \left(\ln \left| \frac{2\gamma U + 1 - \sqrt{1 - 4\gamma}}{2\gamma U + 1 + \sqrt{1 - 4\gamma}} \right| - \ln \left| \frac{1 - \sqrt{1 - 4\gamma}}{1 + \sqrt{1 - 4\gamma}} \right| \right); \quad (13)$$

для $\gamma > 0,25$

$$\overline{t} = \frac{1}{2\gamma} \ln \left(\gamma U^2 + U + 1 \right) - \frac{1}{\gamma \sqrt{4\gamma - 1}} \left(\operatorname{arctg} \frac{2\gamma U + 1}{\sqrt{4\gamma - 1}} - \operatorname{arctg} \frac{1}{\sqrt{4\gamma - 1}} \right); \tag{14}$$

при $\gamma = 0.25$

$$\overline{t} = 4 \ln \left| \frac{U}{2} + 1 \right| + \frac{8}{U+2} - 4.$$
 (15)

Анализируя уравнения (13)–(15) движения расплавленного слоя, получаем, что:

- система неустойчива при $\gamma > 0.25$;
- система нейтрально устойчива при $\gamma = 0.25$;
- система устойчива при $0 < \gamma < 0.25$.

Для математического моделирования переходных процессов в области взаимодействия плазмы электрического разряда и топлива предложены интегральный метод и математическая модель нелинейной задачи нестационарной теплопроводности с фазовыми превращениями: плавление, испарение - при действии поверхностных и объемных источников высокой плотности.

Предложенная математическая модель задачи нестационарной теплопроводности позволяет обеспечивать условия устойчивой и безаварийной работы энергетических и авиационных систем.

Литература

- 1. Буторин В.В., Жуков А.О., Жуков О.О. Прогнозирование возникновения неисправностей в бортовых энергетических системах космических аппаратов // Вестник Российского нового университета. Серия «Сложные системы: модели, анализ и управление». 2015. Вып. 1. С. 74-78.
- 2. Гладкий С.Л., Ясницкий Л.Н. Аналитическая система решения краевых задач математической физики // Аэрокосмическая техника и высокие технологии – 2002: материалы Всерос. науч-техн. конф. / под ред. Ю.В. Соколкина и А.А. Чекалкина. Пермь: ПГТУ. 2002. С. 81.
- 3. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1971. 576 c.
- 4. Куляпин В.М., Елисеев И.С., Бовтрикова Е.В. Решение задач с фазовыми превращениями // Образовательная среда сегодня и завтра: сб. науч. тр. XI Междунар. науч.практ. конф. (Москва, 28–29 нояб. 2016) / под общ. ред. Г.Г. Бубнова, Е.В. Плужника, В.И. Солдаткина. М.: МТИ, 2016. 413 с.
- 5. Куляпин В.М. Электроразрядные устройства систем управления космических аппаратов (развитие теории, исследование режимов работы, разработка): дис. ... д-ра техн. наук. Уфа, 2002. 299 с.

Лаптев В.И. Принципы ab initio в моделировании газоподобных наносистем...

- 6. Фаворский О.Н., Фишгойт В.В., Янтовский Е.Н. Основы теории космических электрореактивных двигательных установок: учеб. пособие для втузов / под ред. О.Н. Фаворского. 2-е изд., перераб. и доп. М.: Высш. шк., 1978. 387 с.
- 7. Шарма О., Ротенберг М., Пеннер С. Задачи переноса тепла при наличии фазовых превращений и переменной температуре поверхности // Ракетная техника и космонавтика. 1967. Т. 5. № 4. С. 84–89.

Literatura

- 1. Butorin V.V., Zhukov A.O., Zhukov O.O. Prognozirovanie vozniknoveniya neispravnostey v bortovykh energeticheskikh sistemakh kosmicheskikh apparatov // Vestnik Rossiyskogo novogo universiteta. Seriya "Slozhnye sistemy: modeli, analiz i upravlenie". 2015. Vyp. 1. S. 74–78.
- 2. *Gladkiy S.L., Yasnitskiy L.N.* Analiticheskaya sistema resheniya kraevykh zadach matematicheskoy fiziki // Aerokosmicheskaya tekhnika i vysokie tekhnologii 2002: materialy Vseros. nauch-tekhn. konf. / pod red. Yu.V. Sokolkina i A.A. Chekalkina. Perm': PGTU. 2002. S. 81.
- 3. *Kamke E.* Spravochnik po obyknovennym differentsial'nym uravneniyam. M.: Nauka, 1971. 576 s.
- 4. *Kulyapin V.M., Eliseev I.S., Bovtrikova E.V.* Reshenie zadach s fazovymi prevrashcheniyami // Obrazovateľnaya sreda segodnya i zavtra: sb. nauch. tr. XI Mezhdunar. nauch.-prakt. konf. (Moskva, 28–29 noyab. 2016) / pod obshch. red. G.G. Bubnova, E.V. Pluzhnika, V.I. Soldatkina. M.: MTI, 2016. 413 s.
- 5. *Kulyapin V.M.* Elektrorazryadnye ustroystva sistem upravleniya kosmicheskikh apparatov (razvitie teorii, issledovanie rezhimov raboty, razrabotka): dis. ... d-ra tekhn. nauk. Ufa, 2002. 299 s.
- 6. Favorskiy O.N., Fishgoyt V.V., Yantovskiy E.N. Osnovy teorii kosmicheskikh elektroreaktivnykh dvigateľnykh ustanovok: ucheb. posobie dlya vtuzov / pod red. O.N. Favorskogo. 2-e izd., pererab. i dop. M.: Vyssh. shk., 1978. 387 s.
- 7. Sharma O., Rotenberg M., Penner S. Zadachi perenosa tepla pri nalichii fazovykh prevrashcheniy i peremennoy temperature poverkhnosti // Raketnaya tekhnika i kosmonavtika. 1967. T. 5. № 4. S. 84–89.

DOI: 10.25586/RNU.V9187.19.02.P.007

УДК 539.2-022.532: 533.74/.75: 54-122/.13

В.И. Лаптев

ПРИНЦИПЫ АВ INITIO В МОДЕЛИРОВАНИИ ГАЗОПОДОБНЫХ НАНОСИСТЕМ ИЗ МОЛЕКУЛ И ПУСТОТЫ

Представлены принципы ab initio моделирования газоподобных наносистем из молекул и пустоты. Проведено математическое согласование разупорядоченных позиций координатного пространства наносистемы в рамках атомной, молекулярной и кинетической концепций вещества. Найдено, что газоподобные наносистемы могут охватывать от одной до ~27 000 молекул. Показано, что такие наносистемы представляют собой комбинации точечных, единичных или протяженных частиц в виде ассоциата. Вскрыты геометрические особенности структуры газоподобного нанофрагмента: они указывают на переменность иерархической организации газов в масштабе от ангстрема до нанометра. Изложенные выше обстоятельства привели нас к выводу, что излагаемая модель газа является качественно новой.

Ключевые слова: молекула и пустота, газоподобная наносистема, закон Авогадро, уравнение состояния Ван-дер-Ваальса.